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In a report at the All Union conference on the theory and applications 
of thin shells (Tartu, 1957) the author has proposed an approach to the 
statistical theory of stability of shells. The basic features of that 
approach are presented in [I]. 

The investigations are based on the assumption that all the factors 
which determine the random character of bending of a shell are divided 
into three groups: 

1) the scatter of the elastic, geometric parameters of the shell, the 
parameters which determine the manner in which the shell is supported. 

It is assumed that the parameters of this group al, ..,, an do not de- 

pend on time, and that a cumulative law of their distribution rp(a,. 
. . . . a,) is given. The random components of the external forces, constant 
in time, can also be included here; 

2) the continuous random part of the external loads (for simplicity 
we assume that only the normal component of the external loads is pre- 
sent), which we approximate by the relation 

z@! (P, -$ Qk#j; (P) tl+ 
(f) 

In this formula xk(P) and ~1 are certain determinate functions of the 
coordinates of time. xi(P) forming a base-system 
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of the type which occur in the Brownian motion. 

We will look for an approximate solution to the problem of bending of 

a plate in the form 

and we will determine q(t) by the method of Rubnov-Galerkin. In this 
ease, under the assumption of independence of all three groups of factors, 
the following formula has been obtained for the law of distribution of 

random quantities qk. valid for sufficiently large 

F (a,. *. , (3) 

where f is determined from the Smolukhovskii equation [31. 

If a steady-state distribution is considered, it is given by the re- 

lation 

(4) 

Here U(q, ak) is the potential energy of the system shell-determinate 
part of the external forces, 11’ is a parameter, J is the normalizing 
factor. Regarding the statistical and mechanical meaning of the parameter 
P see El-43. 

A certain assumption is made below. In order to formulate it, let us 
consider the equations which determine qk at fixed bk 

We assume that from these equations qk is defined by the relations 

qk o = A, (a) (6) 

which perform a single-valued transformation of the domain of parameters 

a intO qoe. Note, that this condition is, in fact, the basis of all the 
relations given in the article [51, because the scope of assumptions of 

that paper does not allow for the distinction between the probabilities 
of different branches. in case the relations (6) were multiple-valued. 

Let us further assume that qk can be expressed single-valuedly from 
(5). (6) in terms of qko, so that 
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ak = Bk (8) (7) 

This sssumpt ion is not essential (see comment 2) and is introduced 
here only to simplify the derivations. 

Let it be our objective to obtain the asymptotic expansions of F(q) 

for large values of &I. First of all we note, that in the formula (4). 
using the relation (71, we can integrate with respect to qko, which 
leads to the relation 

031 
F (4) = 5 ‘ji- e~-~*“(q~q”) cp (Bk) M fq*)ag, 

--CO 
af = /$I (8) 

M is the modulus of the Jacobian transformation from ak into pko. Let us 
first investigate the asymptotic expansion of J for ~1 - 0~. For this 
purpose we look Into the form of the potential energy U(S, 8). In the 
commonly used nonlinear theories of shells the potential energy is a 
polynomial of the fourth degree with respect to the generalized coordi- 
nates. Also. $ is the point of equilibrium, therefore 

u (6 9”) = ~ ‘fk (P”) (Si - qro) (Sk - qk’) + B ‘ufjk (Q’) (Sf - qi”) (Sj - gjo). (Sk - 
f,k=l f.i,k=l 

n 

- qk”) f 
i,j,k.l=l 

Moreover, q” is the only point of equilibrium, hence the function 

U(s, 9’) will have no other extreme values besides go. 

1x1 the integral (4) we change the variables 

Thus we get 

z+g)= i uik (~+~)~+ i u~j~(~+*)ti~~ i 

i,k=f i. j, k=i 

+ WI 

Assuming that the functions on the right-hand side of (Ill are 
sufficiently smooth, for large values of P we obtain the following ex- 
pansion 
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where 

In the Formulas (13) to (15) the quantities R, S, Tare expressed in 
terms of derivatives of Uik, Uikj, Uikjl. The following expansion is ob- 
tained directly from the relation (12) 

Jo(q)-+ -& Jl (Q. x) + 
P 

-&Ja(q, xl-!-... 
II 

where 

03 

Jo(q) = 7 ,-Q*(q,f) dt, Jl (q, x) = - 5 e-Q2(q-f) Q3 (q, x, t) qt 
--a2 ---oo 

Ja(q, x)= f ~~Q~(q.f)(~_Qr)& etc. 
--03 

From (16). in turn, follows the expansion 

J-1 (;+q, =$(I+$+$+...) 
JI (4.x) 

4fqv4 = - Jo&f 2 

Ja(q* 2) Jl* (9*x) ~ - K2(9tx)=- Jo(q) + Jga(q) 

(1’3 

(17) 

(18) 

Now, let us expand U(q, 8). According to (9) we have 



Statistical theory of stability of shells 1103 

uik (9’) (qi - qj”) (9k -- 4k”) + Ujjk (Q’) (4i - qi”) (qj - Pj")X 

i, k=l i. j, k=l 

x(qk-qk’)+ i ‘ijkl ((I’) (qi - qi”) (qi - qi) (qk - qk’) (ql - ql”) (20) 

i.j.k, 1=1 

Substituting the second of the relations (10) into (20) we will obtain 

u((l,q”)= 5 uik(d+q)x$+ i u,,(~+q)x~f 

i. k=l i. j.k=l 

+ i 

i,j,k,l=l 

From (21) follows 

where 

From (22) we obtain 

,--Pw, 99 = ,--II&L x) 
[ 

1 + - 
@I (4,4 + @D, (q* 4 

P 
,r+ . ..I 

(21) 

W 

(23 

(24) 

where 

@1(4,x) = - ns (4, e. @)a (q, 2) = f IIs* - l-I4 (25) 

Furthermore, if sufficient smoothness of I+B and M is assumed, we have 

In the Formulas (26), (27) the quantities M al,....a, and q~ al, . . . . a, 
are expressed in terms of the derivatives of M, ‘p, Bk. These formulas 
can be conveniently presented in the following form 

M (4”) c M(q) + i M!!5d!a , 
kc1 pk 
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where Mh and 9k are certain polynomials with respect to zi. 

After these preliminary expansions we turn to Formula (8) for F(q). 

In this integral we perform the second of the substitutions shown in (10). 

As a result we obtain 

WI=-+’ J-l(f+q) cp{& (;+q) ..*B”(;+q)}M(;+q) e-“.(1+? + 
co 

03 

+:.. dry&) ) _s, e--Il:(uPx) l+!h+!G+... i ) [rpw?)) + $ + - * .] [M (4 + 

+J$+...](1+!$+ . ..)dx (29) 

Now, we bear in mind that due to (23) the following relation is true 

From (29), (30) we have directly 

O” F,(q) 
F (4) = cp P (q)) M (q) + 2 k 

k=l p 

where 

(31) 

F1 (q) = & 1 e-nl(qsr) I@f WI + QI) + cpM1 + wM1 dz (32) 
-o[) 

co 

pa (q) = 1 $ e-*z(ppx) 
Jo(Q) _ 

[ ‘p*M + cplM1f cpMa + (Kl + @l) (TM1 + cplM) + cpM we+ 
etc. (33) 

Formula (31) supplies the desired asymptotic expansion. Knowing the 

expansion (31) one can find the asymbtotic expansions for any other 

random quantity functlonally related to qI, . . . , q,,. 

As can be seen from the derivation of Formula (31). there is a con- 

siderable number of quadratures to be taken in finding Fk. However, all 

these quadratures have the form 

03 

s 
e-A(st....,s,)s a, 

1 1.. .,Sn andsl,...,ds, (ai > 0) (34). 

--00 

where A is a positive definite quadratic form and a are integers. It is 

well known that such quadratures are easily expressible in terms of 

elementary functions. The expansion (31) may be useful for large Values 

of u. A’rigorous treatment could be given for this expansion, which, 
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however, does not appear to be so important at this stage of development 
of the theory. Note, that for CI = 03 we obtain from (31) 

Formula (35) provides 
approach” for the use of 

Indeed, in accordance 

F (64 = cp (3 (q)) 3-f 02) (351 

the basic relation of the so-called “quasi-static 
probability methods in the theory of shells t4]. 

rtth this approach, out of all the random factors 
acting on the shell, only aL are taken into consideration. The law of 

distribution of pk” is determined by the elementary formulas of the theory 

of probability, which provide the relations between the laws of distribu- 
tion of functionally interconnected random guantities. In the case under 
consideration we have for the relations (7) 

From (36) we obtain 

F ($1 W = pt (B ‘(q’)) da& 

F (g”) = cp @I (P”)) / a+ 1 = tp (B ~qO)) M (9”) 

i.e. the zero term of the asymptotic expansion (31). 

Thus, the relations of 151 are obtained from Formula 

(37) 

(3) after a 
number of additional simplifying assumptions. This fact, however. is also 
evident from the general considerations. 

Coarent 1. In this note we have considered a case in which the number 

of generalized parameters g is equal to the number of random parameters 
O. obviously, one can without any trouble obtain the asymptotic expansion, 
with corresponding corollaries, for the case in which the number of para- 
meters p is smaller than that of parameters a. 

Comment 2. In case ak turn out to be multiple-valued functions of qk, 

the entire derivation of the asymptotic formula remains un~h~ged and 
only after the transition from ac to qk ’ in the integral (3) it takes the 
form 

In this formula Bka, ak8 corresponds to the &h branch, p is the total 
number of branches for a given 9”. Thus, the zero term of the expansion 
(31) takes, accordingly, the form 
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Com#cnt 3. The asymptotic expansion (31) may also be used for the case 
in which the relations (5) have a multiple-valued solution, but there 
exists a significant difference in the levels of the potential energy. 
However, if there are several configurations of equilibrium with the 
levels of potential energy close to each other, then the expansion (31) 

will change its form. although in this case it also can be readily ob- 

tained. 

Comnent 4. The method of deriving the asymptotic series used in this 
paper can also be applied when the question is not one of the distribu- 
tion of qk, but of other parameters in the problem, 

For instance knoring the distribution (3) or (4), one can find the 
probability p of a snap-through for the system, for which it is also 
easy to obtain the asymptotic expansion of the form (28). The zero term 
of the expansion gives the law of distribution of the upper critical 
value, This can be seen directly from the fact that if only the scatter 
of the parameters ak is considered (as it is done in [51). then for each 
set of parameter8 ok, the snap-through may take place only when the loads 
have reached the upper critical value. 
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